Mechanistic insights into ectodomain shedding: susceptibility of CADM1 adhesion molecule is determined by alternative splicing and O-glycosylation
نویسندگان
چکیده
Ectodomain shedding (shedding) is a post-translational modification, which liberates the extracellular domain of membrane proteins through juxtamembrane processing executed mainly by the ADAM (a disintegrin and metalloprotease) family of metalloproteases. Because shedding alters characteristics of cells in a rapid and irreversible manner, it should be strictly regulated. However, the molecular mechanisms determining membrane protein susceptibility to shedding (shedding susceptibility) are largely unknown. Here we report that alternative splicing can give rise to both shedding-susceptible and shedding-resistant CADM1 (cell adhesion molecule 1) variant proteins. We further show that O-glycans adjacent to the shedding cleavage site interfere with CADM1 shedding, and the only 33-bp alternative exon confers shedding susceptibility to CADM1 by inserting five non-glycosylatable amino acids between interfering O-glycans and the shedding cleavage site. These results demonstrate that shedding susceptibility of membrane protein can be determined at two different levels of its biosynthesis pathway, alternative splicing and O-glycosylation.
منابع مشابه
Increased Ectodomain Shedding of Cell Adhesion Molecule 1 from Pancreatic Islets in Type 2 Diabetic Pancreata: Correlation with Hemoglobin A1c Levels
Pulmonary emphysema and type 2 diabetes mellitus (T2DM), both caused by lifestyle factors, frequently concur. Respectively, the diseases affect lung alveolar and pancreatic islet cells, which express cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member. Protease-mediated ectodomain shedding of full-length CADM1 produces C-terminal fragments (CTFs) with proapoptotic activity. I...
متن کاملIncreased ectodomain shedding of lung epithelial cell adhesion molecule 1 as a cause of increased alveolar cell apoptosis in emphysema
RATIONALE Alveolar epithelial cell apoptosis and protease/antiprotease imbalance based proteolysis play central roles in the pathogenesis of pulmonary emphysema but molecular mechanisms underlying these two events are not yet clearly understood. Cell adhesion molecule 1 (CADM1) is a lung epithelial cell adhesion molecule in the immunoglobulin superfamily. It generates two membrane associated C ...
متن کاملIncreased ectodomain shedding of cell adhesion molecule 1 as a cause of type II alveolar epithelial cell apoptosis in patients with idiopathic interstitial pneumonia
BACKGROUND Lung alveolar epithelial cell (AEC) apoptosis has attracted attention as an early pathogenic event in the development of idiopathic interstitial pneumonia (IIP); however, the causative mechanism remains unclear. Cell adhesion molecule 1 (CADM1) is an AEC adhesion molecule in the immunoglobulin superfamily. It generates a membrane-associated C-terminal fragment, αCTF, through protease...
متن کاملCADM1 is expressed as multiple alternatively spliced functional and dysfunctional isoforms in human mast cells
Cell adhesion molecule 1 (CADM1) is implicated in the pathogenesis of several diseases and is responsible for adhesion and survival of mast cells (MCs). Differential expression of CADM1 isoforms was found in different species. We previously cloned SP4, SP1, SP6 and a dysfunctional isoform from human lung MCs (HLMCs) and the MC line HMC-1. The aim of this study was to identify all isoforms expre...
متن کاملA systematic study of modulation of ADAM-mediated ectodomain shedding by site-specific O-glycosylation.
Regulated shedding of the ectodomain of cell membrane proteins by proteases is a common process that releases the extracellular domain from the cell and activates cell signaling. Ectodomain shedding occurs in the immediate extracellular juxtamembrane region, which is also where O-glycosylation is often found and examples of crosstalk between shedding and O-glycosylation have been reported. Here...
متن کامل